Kidney disease represents a global public health challenge. Chronic kidney disease alone affects 10-15% of adults, and kidney cancers add to this burden. Despite the high prevalence and the great costs associated with treating kidney diseases, the low number of clinical trials and specific treatments in nephrology attests to a shortage of therapeutic targets. The identification of druggable targets has been complicated by an incomplete understanding of the underlying mechanisms. Pharmacological compounds that operate on proteins or pathways connected to a given disease by human genetic evidence are twice as likely to successfully move through the clinical development pipeline, compared to those with no genetic support. Therefore, NephGen will use evidence from both monogenic and complex genetic kidney diseases to identify and characterize molecules and pathways that represent targets to improve the prevention and treatment of kidney disease. To this end, NephGen researchers have assembled large patient- and population-studies, and established a variety of model organisms and state-of-the-art methods for genome editing, (single-cell) sequencing, structural biology, diverse omics technologies, whole animal live imaging as well as integrative analyses and modeling of high-dimensional data. To facilitate clinical translation, NephGen will use both modern statistical approaches and modify the implicated molecules and pathways in disease-specific model organisms through genetic and pharmacological approaches.